Our DNA Is Becoming the World’s Tiniest Hard Drive Through Enzymatic Synthesis.

0

DNA Hard Drive Data Storage Concept

Researchers propose faster method for recording data to , showing promise in fields of digital data storage, neuron recording.

Our genetic code is millions of times more efficient at storing data than existing solutions, which are costly and use immense amounts of energy and space. In fact, we could get rid of hard drives and store all the digital data on the planet within a couple hundred pounds of DNA.

Using DNA as a high-density data storage medium holds the potential to forge breakthroughs in biosensing and biorecording technology and next-generation digital storage, but researchers haven’t been able to overcome inefficiencies that would allow the technology to scale.

“Nature is good at copying DNA, but we really wanted to be able to write DNA from scratch.” — Keith Tyo, Associate Professor of Chemical and Biological Engineering

Now, researchers at propose a new method for recording information to DNA that takes minutes, rather than hours or days, to complete. The team used a novel enzymatic system to synthesize DNA that records rapidly changing environmental signals directly into DNA sequences, a method the paper’s senior author said could change the way scientists study and record neurons inside the brain.

The research, “Recording Temporal Signals with Minutes Resolution Using Enzymatic DNA Synthesis,” was published on September 30, 2021, in the Journal of the American Chemical Society. The paper’s senior author, Northwestern Engineering’s Keith E.J. Tyo, said his lab was interested in leveraging DNA’s natural abilities to create a new solution for storing data.

The paper’s senior author, Northwestern engineering professor Keith E.J. Tyo, said his lab was interested in leveraging DNA’s natural abilities to create a new solution for storing data.

“Nature is good at copying DNA, but we really wanted to be able to write DNA from scratch,” Tyo said. “The ex vivo (outside the body) way to do this involves a slow, chemical synthesis. Our method is much cheaper to write information because the enzyme that synthesizes the DNA can be directly manipulated. State-of-the-art intracellular recordings are even slower because they require the mechanical steps of protein expression in response to signals, as opposed to our enzymes which are all expressed ahead of time and can continuously store information.”

Tyo, a professor in chemical and biological engineering in the McCormick… Brinkwire News Summary.

Share.

Comments are closed.